skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Greybush, Steven_J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Convective initiation (CI) nowcasting remains a challenging problem for both numerical weather prediction models and existing nowcasting algorithms. In this study, an object-based probabilistic deep learning model is developed to predict CI based on multichannel infraredGOES-16satellite observations. The data come from patches surrounding potential CI events identified in Multi-Radar Multi-Sensor Doppler weather radar products over the Great Plains region from June and July 2020 and June 2021. An objective radar-based approach is used to identify these events. The deep learning model significantly outperforms the classical logistic model at lead times up to 1 h, especially on the false alarm ratio. Through case studies, the deep learning model exhibits dependence on the characteristics of clouds and moisture at multiple altitudes. Model explanation further reveals that the contribution of features to model predictions is significantly dependent on the baseline, a reference point against which the prediction is compared. Under a moist baseline, moisture gradients in the lower and middle troposphere contribute most to correct CI forecasts. In contrast, under a clear-sky baseline, correct CI forecasts are dominated by cloud-top features, including cloud-top glaciation, height, and cloud coverage. Our study demonstrates the advantage of using different baselines in further understanding model behavior and gaining scientific insights. 
    more » « less
  2. Abstract Data from rawinsondes launched during intensive observation periods (IOPs) of the Ontario Winter Lake-Effect Systems (OWLeS) field project reveal that elevated mixed layers (EMLs) in the lower troposphere were relatively common near Lake Ontario during OWLeS lake-effect events. Conservatively, EMLs exist in 193 of the 290 OWLeS IOP soundings. The distribution of EML base pressure derived from the OWLeS IOP soundings reveals two classes of EML, one that has a relatively low-elevation base (900–750 hPa) and one that has a relatively high-elevation base (750–500 hPa). It is hypothesized that the former class of EML, which is the focus of this research, is, at times, the result of mesoscale processes related to individual Great Lakes. WRF reanalysis fields from a case study during the OWLeS field project provide evidence of two means by which low-elevation base EMLs can originate from the lake-effect boundary layer convection and associated mesoscale circulations. First, such EMLs can form within the upper-level outflow branches of mesoscale solenoidal circulations. Evacuated Great Lakes–modified convective boundary layer air aloft then lies above ambient air of a greater static stability, forming EMLs. Second, such EMLs can form in the absence of a mesoscale solenoidal circulation when Great Lake–modified convective boundary layers overrun ambient air of a greater density. The reanalysis fields show that EMLs and layers of reduced static stability tied to Great Lakes–modified convective boundary layers can extend downwind for hundreds of kilometers from their areas of formation. Operational implications and avenues for future research are discussed. 
    more » « less